\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\zref@newlabel[2]{}
\providecommand*\new@tpo@label[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\tcolorbox@label[2]{}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces $\Delta \tau t $ extrapolation for the 4-site Hubbard ring. }}{2}{figure.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Spin correlation functions along one leg for the Hubbard ladder. As $t_y$ grows the spin gap becomes large enough so as to detect the exponential decal of the spin correlation function on this small lattice size. The underlying physics of odd-even ladder systems is introduced in the article: Elbio Dagotto and T. M. Rice, Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials, Science 271 (1996), no. 5249, 618?623. }}{5}{figure.2}}
\newlabel{Ladder.fig}{{2}{5}{Spin correlation functions along one leg for the Hubbard ladder. As $t_y$ grows the spin gap becomes large enough so as to detect the exponential decal of the spin correlation function on this small lattice size. The underlying physics of odd-even ladder systems is introduced in the article: Elbio Dagotto and T. M. Rice, Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials, Science 271 (1996), no. 5249, 618?623}{figure.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Density-Density correlation functions of the t-V model. In the Luttinger liquid phase, $-2 < V/t < 2$ it is known that the density -density correlations decay as $ \delimiter "426830A n(r) n(0)\delimiter "526930B \propto \qopname \relax o{cos}(\pi r) r^{-\left (1+K_\rho \right ) } $ with $\left (1+K_\rho \right )^{-1}= \frac {1}{2} + \frac {1}{\pi } \qopname \relax o{arcsin}\left ( \frac {V}{2 | t | }\right ) $ (A. Luther and I. Peschel, Calculation of critical exponents in two dimensions from quantum field theory in one dimension, Phys. Rev. B 12 (1975), 3908.) The interested reader can try to reproduce this result. }}{6}{figure.3}}
\newlabel{tV.fig}{{3}{6}{Density-Density correlation functions of the t-V model. In the Luttinger liquid phase, $-2 < V/t < 2$ it is known that the density -density correlations decay as $ \langle n(r) n(0)\rangle \propto \cos (\pi r) r^{-\left (1+K_\rho \right ) } $ with $\left (1+K_\rho \right )^{-1}= \frac {1}{2} + \frac {1}{\pi } \arcsin \left ( \frac {V}{2 | t | }\right ) $ (A. Luther and I. Peschel, Calculation of critical exponents in two dimensions from quantum field theory in one dimension, Phys. Rev. B 12 (1975), 3908.) The interested reader can try to reproduce this result}{figure.3}{}}